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Equilibrium and stability are examined for a high-current self-com=
pressed discharge:in a dense, optically opaque plasma of finite con=
ductivity, with allowance for dissipation via radiative heat transfer.

If the thermal conductivity is high, the plasma temperature is virtually
constant throughout the cross=section of the discharge, whereas the
density and pressure fall off fairly rapidly away from the axis. The
spectrum for small oscillations shows that such an equilibrium discharge
is unstable with respect to short=wave hydrodynamic oscillations (bend-
ing and necking) if the plasma conductivity is low. Instability can
develop only for long-wave perturbations in a cylindrical discharge,
and also for a nonequilibrium discharge when the rise time is less than
the equilibration ime. A planar equilibrium discharge is stable, while
a cylindrical equilibrium discharge in a dense low~temperature plasma
is more stable than one in a high-temperature plasma.

There have been several discussions of the use of high-cufrent discharges
in dense plasmas as light sources for laser pumping. The choice of
discharge dimensions is governed by the temperature T of the radiating
surface, which should be 3-10 eV. Only ohmic heating can allow one
to keep a plasma at such a temperature for a sufficiently long time
(around 100 usec). On the other hand, hydrodynamicinstabilities (bends,
necks, hot spots) can arise in a dense plasma carrying a current, which
can lead to current interruption and plasma dispersal (see [1] for lit-
erature). Stability is therfore a major problem in the use of such dis~
charges as light sources. However, it is not correct to apply the theory
of [1] vo such discharges, since this theory is for a not very dense, hot,
transparent plasma under conditions such that radiation does not play

a major part in the development of the discharge, whereas a discharge
in a dense, oprically opaque plasma is best as a light source. Such a
plasma can have considerable radiative energy wansfer, which can
influence the entire character of the discharge. Moreover, effects due
1o the finite conductivity (diffusion of electric and magnetic fields)
may play major parts at these relatively low temperatures. Here we
present a theoretical discussion of the equilibrium and stability of a
high-current discharge in a dense, optically opaque plasma having

a finite conductivity and considerable radiative heat transfer.

1. Formulation, The following is [2] the complete

system of equations of magnetohydrodynamics for a
plasma with allowance for radiative heat transfer:
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Here q is the energy flux and S is the radiation flux
in an optically opaque plasma [3]:
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0°=5.,67-107% erg/em? -deg? -sec is Stefan's constant
and [ is the Rosseland path length for the light.

If T is 3—10 eV, the plasma may be considered as
a completely ionized ideal gas, so

P=(1 42Nl = L3207,
_ _3(+gx,, 3 P
g=c =52 T =55 (1.3)

in which M is the ion mass and z is effective ion charge,
The conductivity is then o = az~1T%/2, with a =4 107,

In (1.1) we have neglected the radiation energy rel-
ative to the internal (thermal) energy, which is correct
if

oe
S <L Ppe. (1.4)

This condition is obeyed closely for N = 10! ¢m ™
in the above temperature range. We subsequently neglect
the electron thermal conductivity relative to the radiative
one, i.e., we assume that

L€ o°Til. 1.5)

This inequality also allows us to neglect the viscous
terms in (1,1) and (1.2).

All the results below on the stability are independent
of the explicit form of I (p, T), but to estimate the plasma
parameters we use the expression [3]

Mer"
Z S ’]’0 m;z ’ . (1 .6)

which is correct for a gas with highly ionized atoms*
for y, ~4.4-10%,
We use (1.6) with x ~e~ 22 oT to write (1.5) as

N < 102 72, (1.7

This inequality is obeyed closely for N < 10%! cm™
in this range in T,

*Expression (1.6) is also applicable to description
of free—free transitions in a completely ionized plasma
for v, ~ 4.8-10%,



2. Discharge equilibrium in a dense plasma. Sys-
tem (1.1) shows that the electric field E, should be
considered uniform over the cross-section of the
plasma {for v,= 0) in the strictly equilibrium steady
state, The pressure, density, temperature, current,
and magnetic field are, in general, functions of the
coordinates.

The following equations * (with subscript 0 denoting
equilibrium quantities) define the spatial distribution
of these quantities:
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Here we consider discharges of two types: a planar
(surface) discharge and a simple cylindrical one (Z
pinch). Only numerical methods can give exact solu-
tions to (2.1) in both cases, but we do not need an
exact solution for our purposes, because a discharge
in a dense plasma can be used efficiently as a light
source only when the plasma surface has a high T,
which will occur when T may be taken as almost con-
stant over the cross-section, We assume that this is
s0 to get from the first three equations in (2.1) for the
two cases, respectively, that
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Here Py(0) and ¢,(0) are the equilibrium P and o
(conductivity) at the axis. We use (2.2) and (1.6) to get
T, from the last equation in (2.1) as
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in which
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We have from the above assumption that x2 > x2,
to which we must add the condition for applicability of
radiative heat transfer, Xp »> [ (or rp > 1). These
inequalities may be put as follows for z = 2:

1077 3% > NS> 10107 B . (2.5)

Formulas (2.2) and (2.3) are correct for x =< xP(or L =r1p). The
pressure and density fall sharply near xp,, while the Rosseland length

increases without bound, and the plasma becomes transparent. The
region of transparency is negligibly small for x, > I and makes no
substantial contribution to the energy balance of the discharge, which
is governed on the one hand by ohmic heating and on the other by
emission from the surface. Then X%, > xf, , and the radiation flux
from the surface is that from a black body at T (0).

We have made substantial use of the uniformity of E; in examining
the equilibrium state, but this assumption is correct only after the
passage of an adequate time (the equilibration time} from application
of the potential. Therefore, in examining the stability we are pot bound
to the particular equilibrium state of (2.2) and (2.3) and assume, in
general, an arbitrary inhomogeneous current distribution in the quasi-
stationary state.

3. Stability of a planar discharge., We consider the
stability in the presence of small perturbations:

0 —>po+ 01, TTy+ Ty,
P >Py+ Py, BB+ By, v.

We linearize (1.1)—(1.3) by taking the perturbed
quantities in the planar discharge as dependent on time
and coordinates via (f (x) exp (~iwt + ikyy + ik,z), so
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It is very difficult to perform a general analysis of
(3.1), and we use first the geometrical-optics approx~
imation [4] to investigate how the various processes
affect the oscillations, i.e., for oscillations of wave-
length less than the characteristic length for plasma
inhomogeneity:

X
koty ~ 51 (3.2)

Here Ay ~ hy! is the wavelength of the oscillations
in the direction of the inhomogeneity. We must also
have Ay > [, for the radiative-transfer approximation

*Note that z is only silightly dependent on T, as z =
= TB, with 8 = 0,5, while z 2, However, this T de-
pendence of z is neglected below,
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to apply. We get the following dispersion equations
(eikonal equations {4]) from (3.1) in the zeroth approx—
imation of geometrical optics:
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Here a is the angle between the magnetic field and
the direction of wave propagation, vg is the speed of
isothermal sound in the plasma, and v, is the Alfvén
velocity, Note that (3.3) essentially describes the
oscillation spectrum of a homogeneous magnetically
active plasma with allowance for radiative transfer
and finite conductivity. The first equation describes
the penetration of a transverse (vortex) field into the
plasma, while the second is the dispersion equation
for the Alfvén waves, and the third equation corresponds
to fast and slow magnetosonic waves, It is readily
shown that the oscillations described by these equa-
tions are damped with time (y =Imw < 0), and for
weak radiative transfer (k% ,0°T§ « Pw) they are of
adiabatic type, with the damping factor y ~1,, where-
as in the other limit of strong radiative conduction
they are isothermal, and the damping factoris vy ~I71,

The discharge is therefore stable in the zeroth
approximation of geometrical optics, which means
that the discharge is stable against perturbations whose
wavelength is substantially less than the scale of the
plasma inhomogeneity; however, instability may oc-
cur for wavelengths Ay > x?, and the geometrical-
optics approximation is not applicable to these. The
frequencies (and hence the growth factors) for these
must satisfy w % (vg +v)/x =~ VS/Xp (since v, ~
~ vg for equilibrium). A basic requirement is ef~
ficient radiation from the discharge, which, if xp?>»
> x2, occurs when radiative transfer is rapid. This
inquality allows us to neglect inhomogeneity in T,
relative to the inhomogeneity in density, pressure,
and magnetic field in (3,1). K, in addition, we have

6°Toy —~ xTS c? > 1’ (3 ‘4)

Oppzy® | Tpd CovsTp

the temperature will relax during the oscillations
because the radiative transfer is rapid, so we can put
T, = 0 in (3.1), and the system reduces to a single
fourth-order differential equation for

B:-B:
v = p; -+ an»

though this is still quite complex. The equation can
be analyzed in two opposed limiting cases:
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a) c?ABy » 470,wB, (i.e., o, — 0), when it becomes

(0* 4 2w = 0; (3.5)

b) c?AB; < 410wBy (i.e., 0y — ), when it becomes
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ﬂ)'-’_ky‘lva.z 4rpy Az | 6 ~

(3.6)

To (3.5) and (3.6) we have to add boundary conditions,
which can be derived from the conservation of the total
current and from the restriction on the acceleration of
the plasma boundary in perturbations. If ky = 0 but
k, = 0 (instabilities of constriction type), these bound-
ary conditions follow directly from (3.1) as

v:z?v:O

= 5 for x ==z,

3.7

Now (3.5) has only a positive spectrum of eigen-
values w? for any nondissipative boundary conditions,
and this corresponds to stable oscillations {(sound waves),
The situation is different for oscillations described by
(3.6) whose fundamental modes can be unstable under
certain conditions, as we shall see.
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convert (3.6) to the form of the Schrddinger equation;
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Eigenvalues of w? having Im w > 0 correspond to
unstable oscillations. For modes with ky = 0 (constric~
tions), (3.7) amounts to y(x =+ x,,) = 0, and so we find
that such oscillations can be unstable only if

U@ =k + 3 5 [ e )
1 By 9 By]2
t7 [Zmn“ﬁal <0 (3.10)

We always have U(x) > 0 for an equilibrium dis-
charge described by (2.2) and (2.3), i.e., such a dis-
charge is stable [5]; only a nonequilibrium discharge
can be unstable, when some one of the conditions of
{2,1) is not met. For instance, Ej penetrates only
fairly slowly into the plasma if o, — « (relative to the
compression rate, that is), and a pronounced skin
effect can occur for the current ju(x), whereas P, has
time to equilibrate with the magnetic pressure, Then



the boundary conditions of (3.7) do not apply, in gen-
eral; a local analysis of the stability via (3.10) shows
that the discharge can be unstaple if 3P}* < 2PP{ ,
and the growth factor can be y ~vg/x,.

It is more tedious to analyze the stability of the
solutions to (3.6) for modes with k_, = 0, but the main
conclusion for modes with ky = 0 applies [5] to them
also, namely that a planar equilibrium discharge is
stable against such perturbations, whereas a non-
equilibrium discharge may be unstable, the maximum
growth rate being v, € Vg/%,. We therefore see that
a real discharge is stable if the time for the instability
to grow is greater than the equilibration time (time
for E, to penetrate):

2

T o (3.11)

This inequality is met if N€ 10% AEZT(%, in which
A is the atomic number of the ions.

4, Stability of a cylindrical discharge, The above
analysis is readily extended to a plasma cylinder
carrying a current, with the perturbed quantities rep-
resented as functions of time and coordinates by f (r) x
(exp(~iwt + img + ik,z), in which m is azimuthal wave
number, In the geometrical-optics approximation, the
spectrum of the oscillations is the same (apart from
the trivial substitution k, — m/r) so we consider only
the fundamental modes, to which that approximation
is not applicable, We again assume (3.4) to be met
(with and x replaced by Tp and rT, respectively)
and puf T; = 0; then (3.1) becomes a single fourth-
order differential equation for
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If 0, is high, that is ¢c?AB; < 4wo,w B, (i.e., g, — =),
the equation for v becomes of second order:
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The boundedness of the perturbations for r = ry is
sufficient to define uniquely the spectrum of eigenvalues
of w?, This requirement is equivalent to the conser-
vation of total current and the bounded accelerationused
above., Equation (4,1) has been examined in detail [6]
for modes with m = 0 and ky = 0 (constrictions), where

it was shown that an equilibrium cylindrical discharge
has instabilities whose growth rates in the long-wave
limit (kzrp < 1) are

2 bk

2:"’“('0 =TT TR aNe <£1
T (mn - 0.75x)2 <rp—

3oy T el st
PP=—o?=2Y3 T<r_{ (4.2)

respectively, for the higher (n =1) and fundamental
(n = 0) modes. Analogous formulas describe the in-
stability at shorter wavelengths (k,rp > 1), for which
vy € vg/ry. It can be shown that the growth rates are
of the same order for modes with m = 0 (kinks) in an
ideally conducting plasma,

Consider now a poorly conducting plasma containing
a current, when c?AB, » 476, wB, (i.e., o, — 0); we
show that only the fundamental mode (n = 0) can be
unstable here, We consider only constrictions with
m = 0, Here it is convenient to start from (3.1} in the
form

2 19 Ao
(2 ka0,
# 10 . o1 ro?
<w*75+@—hﬁ““45+7—5ﬁ%
BB, BB, ‘
3, ' TR + (4.3)

Then the boundary conditions take the following
form, being equivalent to current conservation and
restricted boundary acceleration:

u:(—g% + x):O for r=r, (4.4)

System (4.3), {4.4) reducedtothefollowing dispersion
equation in the region w? < k%vé, which contains also
unstable solutions (w? < 0):

Lo (Br,) [11 (ary) + a‘f; @ (r,,)il — B, (Br) ®(rp) =0,

D(ry) = — 2221, (arp) + 22 1 (ar),

OC”‘_‘[‘I‘:ZL B:l“/-]czz__@'l/vs‘z}_ (4.5)

In the long-wave limit, where arp < 1 and frp <«
« 1, (4.5) permits unstable oscillations only for the
fundamental (n = 0), the growth rate being as for an
ideally conducting plasma, i.e., being defined by the
second expression in (4.2), Short-wave oscillations
are also unstable, but they present no great hazard,
as they are damped out within the volume of the plasma.

5. Discussion and conclusions. The results are discussed as regards
use of such a discharge as a light source for laser pumping. Primary
requirements on a light source are a high temperature in the emitting
surface and a reasonably prolonged stable period. This is why a dis~
charge of the above type was chosen. Formulas (2.2) and (2.3) define
the equilibrium state, with r > 1, > I. These inequalities are put
in the form of (2.5) for highly ionized atoms and Ty of 3-10 eV, and
they are met by densities 107 < N < 10% cm™ (for E, of 0.3-1 elec-
trostatic cgs units).

The stability anaysis shows the high radiative conductivity, so
temperature perturbations relax rapidly if (3.4) is met, and instabil-
ities of hot-spot type are absent. Long=~ and short-wave oscillations
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are unstable in a plasma of high conductivity, whereas one of low
conductivity has only long-wave instabilities (kzrp « 1) when (3.11)
is obeyed. A planar discharge is then completely stable, while a cy-
lindrical discharge is unstable only for the fundamental mode.

This means that itisbest touse asa light source a discharge at the
surface of a hollow cylinder of radius Rof 5=10 cm, where the maximum
growth rate is for instabilities. In the relevant temperature range, a
heavy gas (vg ~ 10% cm/sec) has then Ymax ~ @-1) 10% sec-!, which
corresponds to a stable period of 50-100 ysec.

Formulas (2.2)~(2.4) become meaningless for x = x;, (orr = rp),
because the Rosseland length increases rapidly as the plasma density
decreases, and it is no longer correct to use the above radiative-con-
duction approximation. The discharge in a dense opaque plasma is
always surrounded by a layer of transparent plasma carrying a current.
If xp » 1, this layer makes no great contribution to the energy balance
or to the character of the radiation, but it can play a considerable
part in the stability.

We are indebted to G. V. Mikhailov and V. B. Rozanov for many
discussions.
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